

深圳市泰河电子有限公司

SHENZHEN TH ELECTRONICS CO;LTD

立	口	T#	12	\exists	4
\mathcal{F}	ЙΠ	确	ν	\Box	J

Product Confirmation

CUSTOMER:			
Product :	声表面谐振器 R154M F-11 DIP		
Frequency:			
Model:			
DATE.			

承认后请寄回一份

PLS SEND BACK ONE COPY TO US AFTER YOUR APPROVAL

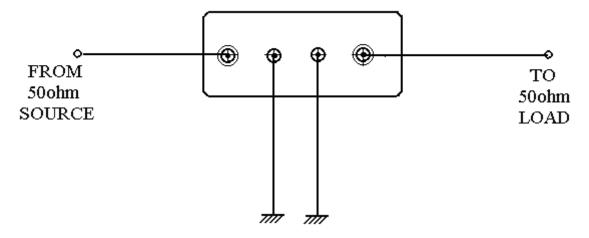
承认結果	客戶签名	客戶承认章	日期	备注
CONCLUSION	SIGNATURE	STAMP	DATE	REMARK
合格				
ACCEPT				
不合格				
REJECT				

制表:	刘小姐	审核:			
			(公音)		

尊敬的客户:请您抽出一点时间,在7-10个工作日内将承认书回签,若未回签,以视默认.谢谢合作!

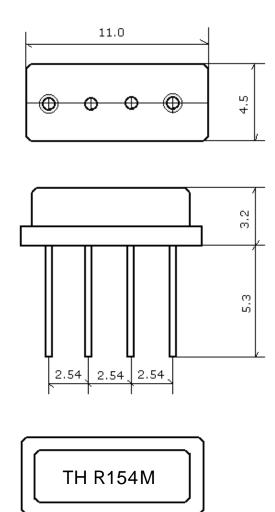
1. SCOPE

This specification is applied to a SAW resonator designed for the stabilization of transmitters such as garage door openers and security transmitters.


2. ELECTRICAL SPECIFICATION

DC Voltage VDC	30V		
AC Voltage Vpp	10V50Hz/60Hz		
Operation temperature	-40°C to +85°C		
Storage temperature	-45°C to +85°C		
RF Power Dissipation	0dBm		

2.2 Electronic Characteristics


Item		Unites	Minimum	Typical	Maximum
Center Frequency		MHz	153.925	154.000	154.075
Insertion Loss		dB		2.2	2.5
Quality Factor Unload Q			14000	14500	
50 Ω Loaded O			3000	4000	
Temperature	<u>Furnover Temperature</u>	$^{\circ}\mathbb{C}$	10	25	40
Stability Freq.temp.Coefficient		ppm/°C2		0.037	
Frequency Aging		ppm/yr		<±10	
DC. Insulation Resistance		$\mathbf{M} \Omega$	1.0		
RF Equivalent RLC Model	Motional Resistance R1	Ω		28	30
	Motional Inductance L1	μН		532.63	
	Motional Capacitance C1	fF		2.0053	
Transducer Static Capacitance		pF		2.6	

3. TEST CIRCUIT

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com

4. DIMENSION

5. ENVIRONMENTAL CHARACTERISTICS

5-1 High temperature exposure

Subject the device to +85 °C for 16 hours. Then release the resonator into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-2 Low temperature exposure

Subject the device to -40° C for 16 hours. Then release the device into the room conditions for 24 hours prior to the measurement. It shall fulfill the specifications in 2.2.

5-3 Temperature cycling

Subject the device to a low temperature of -40° C for 30 minutes. Following by a high temperature of $+85^{\circ}$ C for 30 Minutes. Then release the device into the room conditions for 24 hours prior to the measurement. It shall meet the specifications in 2.2.

5-4 Resistance to solder heat

Dip the device terminals no closer than 1.5mm into the solder bath at 260° C $\pm 10^{\circ}$ C for 10 ± 1 sec. Then release the device into the room conditions for 4 hours. The device shall meet the specifications in 2.2.

5-5 Solderability

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com

......

TH R154M 声表面谐振器DIP F11

Subject the device terminals into the solder bath at 245° C $\pm 5^{\circ}$ C for 5s, More than 95% area of the terminals must be covered with new solder. It shall meet the specifications in 2.2.

5-6 Mechanical shock

Drop the device randomly onto the concrete floor from the height of 1m 3 times. the device shall fulfill the specifications in 2.2.

5-7 Vibration

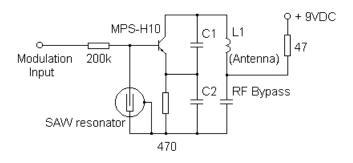
Subject the device to the vibration for 1 hour each in x, y and z axes with the amplitude of 1.5 mm at 10 to 55 Hz. The device shall fulfill the specifications in 2.2.

6. REMARK

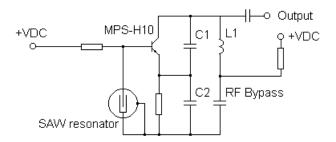
6.1 Static voltage

Static voltage between signal load & ground may cause deterioration &destruction of the component. Please avoid static voltage.

6.2 Ultrasonic cleaning


Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning

6.3 Soldering


Only leads of component may be soldered. Please avoid soldering another part of component.

7.TYPCIAL APPLICATION CIRCUITS

Typical low-power Transmitter Application

Typical Local Oscillator Application

http://www.taiheth.com TEL: 0755-27872782 Email: taiheth@163.com